News and thoughts about 3d printing technology

Posts tagged “I.materialise

Digital Creations at The High Museum

I was able to catch the last day of the “Modern by Design” exhibit at The High Museum in Atlanta and it displayed plenty of works built from digital models.  The entrance to the exhibit  held a large experimental project created by the Joris Laarman lab in Amsterdam.

Joris Laarman, "Digital Matter"

Though not considered 3D printing or Rapid Prototyping, this mechanical arm operates via commands. Instead of being told to melt or cure a material in precise layers, the head of this arm picks up individual squares and melds them into this solid table.  Created as pixels in digital space, the table is made of small metallic bricks.

Table made from "Digital Matter" project by Joris Laarman Lab

Joris Laarman, "Digital Matter"

Joris Laarman, "Digital Matter"

I knew the exhibit had some 3D printed models but I did not anticipate seeing a totally experimental and ornate display of additive manufacturing. Though seemingly not an efficient use of mechanics I see a few areas to be explored based on the key elements of this project. While 3D printing with even a high grade machine the material is fed at a constant rate and must always be formed in paper thin layers. The technique used here in “Digital Matter” uses blocks, and those tiny blocks can form larger blocks or shapes. Theoretically, the large arm in the first picture could have a bunch of smaller builders on a nearby platform, simultaneously creating forms that will be added to the final model by the main arm. If perfected this could cut down on build times.  I think as 3DP technology progresses we will start to see multiple extruders or print heads that move along different axes but communicate with each other. It is a matter of time before the software is available to support such a machine.

Another variation might be an extruder that is designed to build only one shape or section of that shape. If it can build a sturdy structure like a sphere or egg, and build that shape onto itself, such a machine complex and bumpy surfaces in larger scale.

The other floors of the exhibit were mixed with early modern designs such as Eames chairs and industrial parts. The 3D printed parts were pretty much limited to different types of chairs. I have a tricky  relationship with chairs in the design world as you can only experience them visually, mostly through exhibits and design criticism. The chair may have an unusual and appealing form but there is never a way to really know how well it was designed, and one is left approximating what it might be like based on experience sitting in chairs.  Since a chair’s function is to be sat on, understandably, more effort is put into the form with not much room to improve in the world of sitting.

Collapsible Stool by Patrick Jouin

(Collapsed) Stool By Patrick Jouin

By FRONT Design, Sweden

The stool was printed using selective laser sintering which allows for moving parts. It’s hard to see how it closes but I think the circle in the center is pushed down.  The second chair was built with a polymer and then covered in lacquer for the smooth reflective surface. Creating a chair these non-symetrical features is unique to 3D printing over some traditional methods. To build and cut in wood, textiles or even metal uses tools that are designed for accuracy and geometry. Creating fluid, organic shapes like this chair would require more time to experiment with cutting techniques and materials, and even more to actually build it. Having the freedom to create the model in digital space using an array of creative software packages is only made better by not having to build ten of them by hand.

I look forward to the future of digital manufacturing in America as it will bring more manufacturing jobs to produce items at home and locally. When everyday people are exposed to the possibilities that are opened by the technology, their creative and useful ideas will seem less crazy and more feasible to build.

Amazing examples of 3DP

*Note about Makerbot: This product is a derivative of the Reprap, a project that has been researching ways to make self-replicating machines. I can download a manual to print half the plastic parts from my friend’s Reprap, then go to the hardware store/internet for the other half. Whole machine can be $500. But Makerbot and Reprap are two separate undertakings run by separate people. Both are open source, Makerbot just made its own version and sells it. The machine Reprap originally produced can be viewed here.

On the photos. From this collection alone you can see the range of what some printers can do.

Repraps and Makerbots use a more basic technique called additive layering. In this case a precise plastic melting head, called an extruder, is moved by small gears and motors (It could also be a moving platform with stationary extruder head, but it is easier if I imagine the head).  The movements of the head are given by computer and are specific to the thing I am building.

The flyswatter was made on a Makerbot. The striations inside the body of the fly are created by a .50mm nozzle that moved up and down the shape creating the striped look. Along with the movement commands, the extruder is told where to melt the plastic and where to leave empty spaces.

That’s pretty complex in my mind, but an even more advanced method called selective laser sintering can create high levels of detail, like shapes in the second two photos.

Before I really explain what it does, keep in mind the method of layering . When creating the bunny on the makerbot the computer decided to build from the very bottom up. It makes sense this way since the ears have to sit on top of the head and so on.

This limits the Makerbot to layering the plastic on top of the previous layer of plastic (for the most part).The ring could not be printed on a Makerbot because the plastic being melted out to form the web would just fall to the platform.

Selective Laser Sintering, or SLS,  layers supportive material as it builds. Take this analogy. I have a glass box in which I need to build a tower of marbles. I try to stack the marbles but they fall. To stack the marbles into a tower I can use sand. Put the first layer of marbles into position, then fill the box with sand to cover that layer over. This creates a new platform on which to build the next layers.

SLS uses this to a much more precise and microscopic degree. These layers are a tenth of a millimeter and the sand is really a fine powder. It is still contained in a box and the machine lays the powder before each layer of material.

Imagine what you can do if you are not limited by the type of material… More on that.